A syntactic learning method for hand gesture recognition
نویسندگان
چکیده
Hand gesture recognition has been a major challenge during the recent years. Many of the hand gesture recognition systems however, have been restricted to a few number of possible movements. Some applications such as gesture recognition in understanding sign languages, include a large number of classes and need an automatic learning method for extracting the features of each class. An important characteristic of these applications is that each sample belonging to a class may have a different length and the position of the key features may change. In this paper we have proposed a syntactic method for classifying the input sequences. The grammer of the method is extracted during training stage.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملHuman Computer Interaction Using Vision-Based Hand Gesture Recognition
With the rapid emergence of 3D applications and virtual environments in computer systems; the need for a new type of interaction device arises. This is because the traditional devices such as mouse, keyboard, and joystick become inefficient and cumbersome within these virtual environments. In other words, evolution of user interfaces shapes the change in the Human-Computer Interaction (HCI). In...
متن کاملThe Enhancement of Low-level Classifications in Sequential Syntactic High-level Classifiers
This paper surveys a new research field of object behavior classification using sequential syntactic pattern recognition, which recognizes high-level object behaviors while in parallel recovering from low-level object recognition classification errors. A new approach of syntactical object behavior classification with a robust implementation is introduced. It is an innovative approach that requi...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کامل